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Abstract. We consider the finite-size (FS) scaling behaviour of the transverse correlation 
lengths cp' for an interface confined in a strip geometry exactly at a second-order 
fluctuation-dominated wetting transition. We show that the dimensionless amplitude ratios 
AF1=ZL2/kBT#r1 (with Z the surface stiffness coefficient) are related tothe short-distance 
expansion critical exponent 8 by AV' = &(n + E - 1)/2 for all fluctuation-dominated 
wetting transitions, provided the binding potential V(y) in the capillary-wave model is 
conformally mapped from the semi-infinite plane. We argue that the existence of this 
amplitude-exponent relation reflects the conformal invariance of the capillary-wave model 
Lagrange density and list a number of one-point functions which can be shown to exhibit 
this invariance explicitly. 

A remarkable conclusion of studies of finite-size (FS) effects at bulk criticality is the 
existence of universal amplitude-exponent relations [ 11 which unify FS scaling 
behaviour [2] in different universality classes. For example consider a model Hamil- 
tonian defined on a periodic strip of infinite length hut finite width L. FS scaling and 
hyperuniversality (see e.g. [2]) imply that the (true) correlation length ,$ at bulk 
Criticality is related to L by L / (  = A (for L+ 00) with A a universal number (within a 
given universality class). Moreover, a number of exact analyses [ 11 show that for king, 
Potts, eight-vertex and other models 

A=.rn?J (1) 

with 1) the bulk critical pair correlation function exponent. Consequently the quotient 

[3] has shown that (1) may be viewed as a consequence of local (conformal) scale 
invariance at bulk critical points. 

In !he present letter we show how FS scaling amplitudes for interfaces and interfacial 
unbinding (wetting) transitions (for a review of wetting phenomena, see e.g. [4]) in 
two bulk dimensions may be similarly related to wetting critical exponents [sa, b]. 

may be regarded as a consequence of the local conformal invariance of the effective 
interfacial (capillary-wave) model Lagrange density. 
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To begin, consider an interface, separating two 'bulk' phases, confined to a strip 
of infinite length (M = m) and finite width L. The thermal capillary-wave-like fluctu- 
ations of the interface are described by the continuum effective interfacial (capillary- 
wave) Hamiltonian (see e.g. [6] for a recent discussion) 

where Z is the surface stiffness coefficient and V ( y ( x ) )  is the interfacial binding 
potential. The single-valued graph y ( x )  measures the instantaneous height of the 
interface separating the phases. We shall assume that each (semi-infinite) wall is wet 
by a different phase at exactly the same critical value of some field(s) (temperature or 
chemical potential for fluids and surface field or bulk field for Ising-like magnets). In 
the strip geometry the interface wanders widely between the two walls exactly at the 
wetting transition giving rise to a variety of intriguing FS behaviour [7-91. Here we 
shall confine ourselves to studying FS effects at fluctuation-dominated continuous- 
wetting transitions. Further we shall assume that the wetting transitions occurring at 
each semi-infinite surface belong to the same fluctuation-scaling regime (for a detailed 
discussion of the fluctuation regimes at wetting transitions, see e.g. [10a,b]) and 
distinguish between FS effects a t  strong, weak and intermediate fluctuation-scaling 
critical wetting transitions. 

The quantities we are interested in are the transverse correlation lengths #' 
( n  = 1.2,. . . ,a). Here # corresponds to the true correlation length governing the 
asymptotic exponential decay of two-body correlations parallel to the walls. The 61''' 
are easily calculated as .$'=(p(E,-E,))-'  where E, ( m  = 0 , 1 , 2 , .  . . ,m)  are the 
eigenvalues of the Schrodinger operator [loa] 

and p =!/!CBE From srding theories [I!, 121 we expect #'"L' for FS effeas at 
fluctuation-dominated wetting transitions. It is therefore convenient to define a set of 
dimensionless amplitude ratios 

~p = P Z L ~ / # '  (4) 

L.. ^^^I ___:.I- .L̂  L ..,I_ ^^^^  U," ,.-.."". A("' *- I." ..̂ :..-."", :.. +ha ",..,.",. vy arrawpy W L L ~  LUG vum L I I L I G ~ L I  baa=. V Y C  c;nps+r LU v~ u i u v r x a a i  11. ~iir ~ L L W L S -  

fluctuation (SFL) and weak-fluctuation (WFL) scaling regimes in the limit of large L. 
The explicit calculation of AI'' within the various regimes is quite straightforward and 
follows from analysis described in detail elsewhere [13,141. 

In the WFL scaling regime we find 

-1 
7r 

( 5 )  Aj"' = --n( n +2) WFL 
2 

which demonstrates that the AV' are indeed universal. The result is independent of 
the precise details of the wetting transition occurring at each semi-infinite surface [131 
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(provided the transition belongs to the WFL regime) and is unchanged if irrelevant 
operators in V ( y )  are allowed for. FS effects at WFL regime transitions include a number 
of interesting cases. For example the above result is equivalent to the conclusions of 
Privman and Svrakic [15] who studied the correlation lengths in a solid-on-solid model 
of an lsing strip with fixed f boundary conditions. More recently the result for A f )  
has been derived by Abraham ef al[16]  for an Ising model strip with opposite surface 
fields. The WFL regime result (5) is pertinent to the case where the magnitudes of the 
surface fields are greater than the value a t  which critical wetting occurs in the limit 
L+ 00. WFL regime amplitudes (5) describe generic FS effects at fluctuation-dominated 
complete-wetting transitions; e.g. suppose a two-dimensional binary liquid mixture 
(below its consolute point) is confined between two walls each of which is completely 
wet by different phases. Recall that dispersion forces are irrelevant for complete wetting 
in d = 2  so that the transition is fluctuation-dominated [17]. Consequently, the WFL 

regime amplitudes (5) (with X the surface tension of the liquid-liquid interface) also 
describe this case. 

The FS amplitudes AI"' may also he calculated in the SFL scaling regime. We find 

for this case. As for the WFL regime the result (6) is not altered by allowing for 
long-ranged irrelevant operators in V ( y ) .  It is interesting to note that the result (6) is 
equivalent to the conclusions of Privman and Svrakic [15] for the correlation lengths 
in the king strip with anti-periodic (AP) boundary conditions. The reason for the 
identity of these two results is not at present clear. The result (6) (at least for n = 1) 
should be amenable to test in the analytic work of Abraham et ol [la] on the king 
strip. The SFL regime amplitudes (6) describe the FS effects in the king strip when the 
(opposite) surface fields take their critical wetting value C121. 

At present the two sets of amplitudes (5) and (6) seem unrelated. Further insight 
into their structure arises if we allow for marginal long-ranged forces in V ( y ) .  This 
enables us to study AI'' at the WFL/MF (mean-field) boundary and the SFL/WFL 

boundary which constitute the intermediate fluctuation (IFL) scaling regimes. Recall 
thz: z: B we:ting trznsition !he :FL regime describes !he CZSP where V ( y )  c n ~ t a i ~ s  L! 

term V ( y )  - wy-' (y +CO) exactly at the transition. In the strip geometry we follow 
our earlier analysis [13,18] and set 

2 9  O < y < L  W T 2  
V ( y )  =-coset 

L' L (7) 

and distinguish the two IFL regimes by means of suitable boundary conditions [13]. 
Note that in the limit L+ CO (7). recovers a pure power-law decay. For the wFL/MF 
case it is necessary to restrict w -l(SXp2) whilst for the SFL/ WFL boundary we require 
-3(8Xp2)> w a - l ( S X p ' ) .  This latter condition on w ensures that we only consider 
FS effects in subregimes (A) and (B) of the model of Lipowsky and Nieuwenhuizen 
[19]. We do not consider FS effects at the anomalous subregime (C) in the present 

wFL/ta= case we find 
-a-Pr E,.- rh-  nn+nn+;.l ( 7 )  YYY'L. 1 ". ,... YVL'L'L'Y. \,, Y L L  U'.".,'.- 0 Y . V L L V . L  ."L 1-11 

snnlwtir ~nl..+;n~ fnr A<") is possib!e [!3!, Fe: !he 
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whilst for the s F L / w F L  analysis shows that 

Al"'+ +vGGEp - 1) SFL/ WFL. (9 )  

Setting w = 0 in (8) and (9) reproduces the WFL and SFL result respectively. A remarkable 
feature of the results (9, (6), (8) and (9) is that they all satisfy the amplitude-exponent 
relations 

(10) 
7r2 

A/ ln)= i f l (  n + 8 - 1) all regimes 

where 8 is the short-distance expansion (SDE) critical exponent which characterizes 

functions at critical (and complete) wetting transitions [Sa, h]: if C ( z )  denotes the 
local value of the order parameter (magnetization, number density, concentration) a 
distance z from the wall then 8 is defined from the asymptotic SDE expansion 

:'.e pe:pendico!a: 2!gcbraic decny of the ..rder-parmc!cr prc?fi!c m d  co!Tc!ztio!! 

where CA is the hulk value of the phase absorbed at the wall and C ,  denotes the value 
of the order parameter at z =a. Here tL denotes the perpendicular correlation length 
which, recall, diverges as the wetting transition is approached. In d = 2 8 is universal 
in the SFL regime e=1)[5al and universal in the WFL [Sb] (e  = 3). At the w F L / M F  

boundary 0 = 2 +  l+8wPP2 [,5b] whilst at the sFL/wFL regime boundary 8 = 2  for 
subregime A [Sb] and 0 =2-d1+XwXp2 for subregime B. Equation (iirj is the main 
result of the paper. It unifies FS scaling behaviour at SFL, WFL and IFL wetting transitions 
and also accounts for FS effects in the Ising strip with AP boundary conditions. Recall 
that the case with fixed boundary condition belongs to the WFL regime. Equation (10) 
is directly analogous to (l) ,  relating a FS scaling amplitude to a critical exponent 
governing the algebraic decay of an order parameter. It should he emphasized, however, 
that the incorporation of the IFL regimes in the classification (10) is only possible for 
the potential (7)t. This is important in order that we may understand the origin of the 
amplitude-exponent relation more clearly. Here we elaborate further on our earlier 
treatment of local scale invariance at wetting transitions [13,18]. The fixed point 
Hamiltonian H*[y(x)] at a two-dimensional continuous-wetting transition is invariant 
with respect to a renormalization group (RG) transformation which rescales the lattice 
(s.y) .nisotropid!y [In, 2nj 

x+x/b: y + y l b i  

where b, denotes the perpendicular dilation factor. The parallel dilation factor bil= b: 
reflects the value of the thermal roughness exponent in d = 2. At a fluctuation-dominated 

t Equation (9) is also valid for potentials which correspond to uniform shifts of the potential in (7). For 
example (9) is also applicable if 

V(y)=-ycot'- w112 sincc cot2 4 =cosecz 4 - 1. 
L L 
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wetting transition one might expect that a suitably well defined two-point function 
C(Z,(Y, ,  Y Z ;  X I ’ )  (with x I 2  = Ix, - x &  satisfies the homogeneity condition 

C(z)(yi /b , ,YJbL; Xjz/b:)= b;2mCc,,(yi, Y Z ;  (12) 
with 4 the scaling dimension of the local operator in terms of which C,,, is defined. 
In contrast the corresponding one-point function C ( , , ( y )  satisfies the somewhat simpler 
equation 

C( i ) ( y /b , )  = b;’C(,)(y)  (13) 
and the relation between b, and b,, is not explicit. This clearly reflects the translational 
invariance of C ( , ) ( y )  (in the x direction) for the wetting transition in the semi-infinite 
geometry. To proceed consider the case where the interface is of finite length ( M  say) 
with fixed end points y (O) , y (M) .  The partition function Z ( y ( O ) , y ( M ) ;  M )  may be 
expressed in spectral form as 

Z ( Y ( O ) , Y ( W ;  M )  =E ~ ( Y ( O ) ) + X Y ( W )  e--B6nM (14) 

provided V ( y )  is independent of x. The M independence of the eigenfunctions +“(y )  
implies that the eigenstates follow from the form of the interfacial Lagrange density: 

with M infinitesimal. Under a conformal mapping z ( = x + i y  in the semi-infinite 
plane)+ w ( z ) =  u + i v  (with w ( z )  an arbitrary analytic function which preserves the 
boundary y = U = 0) the (local) structure of the free-part of the Lagrange density retains 
a capillary-wave form over an infinitesimal distance. To see this we write the free 
Lagrange density Li (y (x ) )  as 

where A is defined as the angle between the tangent line and the boundary y = 0. Under 
a conformal mapping z +  w ( z )  the tangent line becomes nonlinear but the local angle 
between it and the conserved boundary remains invariant, i.e. the angle A is the same 
defined in both co-ordinate systems. In this sense the capillary-wave form of Li is 
preserved by the conformal transformation. Since the form of the Lagrange density, 
over an infinitesimal distance (‘time’), is all that is needed to define the (‘time- 
independent’) eigenfunctions in a system with x (‘time’) independent V ( y ( x ) )  the 
conservation of (a) the local structure (i.e. capillary-wave form) of the Lagrange density, 
and (b) translational invariance, under a given mapping, implies the existence of a 
restricted class of one-point functions which obey the local scale-invariant generaliz- 
ation of (13) with an isotropic local dilation factor, i.e. 

P(U) = IW’(Z)l+P(Y) (17) 
where P ( I )  are functions of the eigenvectors $ J l ) .  For our present problem we note 
that the analytic function 

L 
w ( z )  =-In z 

77 

maps the semi-infinite plane geometry to the strip and satisfies conditions (a) and (b) 
above. To see this note that the semi-infinite potential V ( y )  = wy-’ satisfies the 
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homogeneity law V ( y )  = b-*V(y /  b ) .  The one-body functions (17) therefore correspond 
to an interface in the transformed geometry with V ( u )  = Iw'(z)l'V(y). For the logarith- 
mic mapping (18) this yields the potential (7) which is indeed translationally invariant. 
Under the mapping we assume that the boundary conditions on the eigenfunctions at 
y = U = O'remain the same. This allows us to distinguish the SFL/WFL and WFL/MF 

boundary regimes as well as the SFL and WFL scaling regimes. As mentioned earlier 
the latter regimes correspond to  the case w = 0. 

To illustrate the above we consider some examples ofthe restricted class of one-point 
functions satisfying (17). These include the simple functions 

+dO, lo' +~(l ' )  dl', 1: + o ( l ' ) + ~ ( l ' )  dl', lo + o ( l ' ) ( l - l ' ) + 2 ( l ' )  dl' 
I 

as well as more complicated examples. In the semi-infinite geometry these functions 
exhibit (different) pure power-law SDE which can be expressed in terms of 0 [14]'r. 
For example, exactly at the wetting transition 

with Oca<< 1. Consequently in the strip geometry (17) and (18) imply 

for the potential (7) and for the SFL and WFL regimes. It is easy to show by substitution 
[18] that this is the exact ground-state wavefunction for all these regimes. Similar 
remarks apply to the other functions listed above which correctly identify the form of 
the excited state eigenfunctions in the strip. The existence of a restricted class of 
functions which map as (17) implies that the eigenfunctions and hence eigenvalues in 
the strip geometry can be universally parametrized in terms of 0 [13]. This is clear 
from the form of +o(u) in equation (18). That the eigenvalues satisfy the same function 
of 0 immediately explains why it is possible to unify the FS effects in the different 
regimes via amplitude-exponent relations of which (10) is an example. 

in summary, we have demonstrated the existence of universai ampiitude-exponent 
relations for wetting transitions in two dimensions and related this to the local conformal 
invariance of the capillary-wave model Lagrange density. This illustrates that the 
symmetry manifested in the local scale invariance of one-point functions can he different 
from the symmetry manifested by the global scale invariance of two-body operators 
at second-order phase transitions. 

The author has benefited from conversations with R Evans, J Hannay and M V Berry. 
This research was supported by the SERC, UK. 

tThe excited state eigenfunctions # " ( I )  with n > 1 are well defined for the WFL/MF problem so that the 
mapping of these functions from the semi-infinite plane is well behaved. Far the SFL regime where there is 
a continuum for scattering states in the semi-infinite system the mapping (17) and (18) still formally 
reproduces the correct I ) ,  & ( I )  even though these latter functions are strictly not defined. For this problem 
it is better to considerthe inverse logarithmic mapping ofone-point functions from the striptothe semi-infinite 
planesince the $ " ( I )  are well definedforthe formergeometry. Since the behaviourof $ " ( I )  in the semi-infinite 
plane is characterized by a power-law behaviour independent of n (for asymptotically small energies) the 
inverse mapping cannot distinguish whether this behaviour reflects the presence of a discrete or continuous 
spectrum. 
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